
Identifying a reduced DTD

from marked up documents�

Alejandro Biay, Rafael C. Carrascoz and Mikel L. Forcadaz

yMiguel de Cervantes Digital Library. Universidad de Alicante. Spain

zDept. de Lenguajes y Sistemas Inform�aticos. Universidad de Alicante. Spain.

Abstract

This paper describes a method for the automatic generation of simpli�ed

document type de�nitions (DTD) from a source DTD and a sample set of

marked up documents. The purpose is to create the minimal DTD that all the

documents in the sample comply. In this way, new �les can be created and

parsed using this simpli�ed DTD but still being compliant with the original,

more general one. The pruned DTD makes the task of markup easier, specially

for non-experienced XML writers.

This tool was used to obtain simpli�ed versions of the Text Encoding Initia-

tive DTD to be used at the Miguel de Cervantes digital library1. This work is

part of a larger project in the �eld of text markup and derived applications [1].

Keywords: automatic learning, feature extraction, grammatical inference, docu-

ment analysis, document markup, digital libraries.

1 Introduction

An Extended Markup Language (XML) document type de�nition (DTD) speci�es

the elements that are allowed in a document of this type. Document types are de�ned

by extended context-free grammars in which the right hand side of the productions

are unambiguous regular expressions [2]. Previous work has addressed the task of

identifying a DTD from examples. A common diÆculty in this approach is the need

to �nd a correct degree of generalization. Some practical tools as FRED [3] let the

users customize their preferred degree of generalization. Ahonen [4, 5] builds a (k; h)-

testable model for the element contents and needs non-trivial further generalization

in order to disambiguate the model [6].

Young-Lai and Tompa [7] rely on a stochastic approach to control overgeneral-

ization, based in turn on the algorithm by Carrasco and Oncina [8]. Presumably,

�Work supported by the Spanish CICyT through grant TIC97{0941
1http://cervantesvirtual.com/

General

(wide scope)

DTD

XML

Sample

files

Analyze

markup

usage

Build

Glushkov

automata

Simplify

Regular

expressions

Simplified

DTD

Figure 1: Architecture of the DTD simpli�er

the stochastic approach needs large collections of hand-tagged documents. Pizza-

Chef [9] is a tool to generate DTDs suited to a collection of particular tasks and

compliant with the markup directives de�ned by the Text Encoding Initiative (TEI).

However, a general DTD de�ning a global frame that a whole set of �les must

ful�ll allows for a natural way to avoid overgeneralization. Indeed, any particular-

ized, narrow-scope DTD should not accept any document that is not accepted by

the general, wide-scope one.

Therefore, the objective of our approach is to automatically select only those

DTD features that are used by a set of valid documents and eliminate the rest of

them, obtaining a narrow scope DTD which de�nes a subset of the original markup

scheme. This pruned DTD can be used to build new documents of the same markup

subclass.

Using this automated method, the simpli�ed DTD can be updated immediately

in the event that new features are added to (or even eliminated from) the sample

set of XML �les. This process can be repeated as often as needed to generate an

updated DTD.

This technique also allows us to build a one-document DTD, i.e. the minimal

markup schema derived from the general DTD that a given XML document complies.

A further application of this technique is to generate statistics that may help DTD

designers improve their markup schemes. Information about the frequency of use

of certain elements within others helps us to detect unusual structures that could

re
ect markup mistakes or DTD features that allow for unwanted generalization.

2 Motivation and general description

Saving the cost of developing our own DTD and text interchangeability are some

of the reasons why the teixlite.dtd2, XML version of the SGML teilite.dtd of

the TEI scheme, has been chosen at the Miguel de Cervantes Digital Library. But

the teixlite.dtd is still too complex for markup beginners. Our markup team

is composed mostly of humanists with some computer skills who appreciate their

computer work be simpli�ed as much as possible.

On the other hand our XML documents do not use, and do not need all the

markup options provided by the teixlite.dtd. So a simpler DTD was needed to

simplify markup tasks and to avoid possible use of unwanted markup options. But

we still wanted our �les to be TEI compliant and bene�t from the advantages of

sharing a common DTD with other international digitization projects.

We started by de�ning what kinds of modi�cations will allowed in order to make

markup simpler to use but keeping TEI compatibility (except for minor exceptions).

In particular, we allowed for the following changes:

� To specify a set of normalized values for some attributes in order to enforce

their use instead of free data entry.

� To add new attributes only in a few necessary cases (this is the only exception

that may keep our �les from being TEI compliant, but they can be easily

removed anytime we want full TEI compatibility).

� To impose restrictions in element inclusion rules in order to eliminate the

possibility of including certain elements at certain levels of the markup.

� To make some optional elements or attributes mandatory, following our speci�c

markup norms.

� To eliminate optional elements we will not use to simplify the markup task

and to avoid possible errors.

It is clear that doing the simpli�cations by hand is tedious and error prone.

Constructing a set of sample documents representative of all the types of documents

we need to markup together with a program that simpli�es the DTD automatically

will alleviate this task.

A diagram of the process is shown in �gure 1. As the diagram shows, the general

DTD is processed to extract the structure of the markup models and a Glushkov

automaton [10] is built for each one (that is, for each regular expression). The XML

sample �les are then preprocessed to extract the elements used and their nesting

2Available through the TEI consortium at http://www.tei-c.org.

patterns. We keep track of the elements used in the sample �les and mark the

visited states of the automata. Finally, we eliminate unused elements and simplify

the right parts of element de�nitions, i.e. the regular expressions that de�ne further

nestings.

For the implementation of the DTD prune toolkit we needed both an XML and a

DTD parser. We assumed that both the XML sample �les and the source DTD would

be well-formed and valid, so there would be no need to build validating parsers. In

particular, regular expressions are parsed against the EBNF grammar described in

the following section, although indeed, XML forces stricter parentization patterns.

3 Theoretical foundation

The set reg(�) of regular expressions over the alphabet � = fa1; a2; :::; aj�jg can

be de�ned as the language generated by the context-free grammar (V; T;R;E) with

rules
E ! T jT\j"E

T ! F jF\; "T

F !W jW\ � "jW\ + "jW\?"

W ! \("E\)"

W ! a1ja2j:::jaj�j

(1)

and terminals T = �[f\j"; \; "; \�"; \+"; \?"; \("; \)"g. For every regular expression

r 2 reg(�), we denote with sym(r) 2 � the subset of symbols used in r.

A marking of r is a pair (�r; Er) with

� Er 2 reg(N) such that no n 2 N is used in Er more than once;

� �r : N ! � is a mapping such that r is the result of replacing every symbol

n 2 sym(Er) in Er (called positions) with �r(n).

For instance, if � = fa; bg and r = ((a; b)ja)�, a marking of r is given by

Er = ((1; 2)j3)� with �r(1) = �r(3) = a and �r(2) = b. We can immediately extend

�r to work on subexpressions of Er if we assume that �r is a homomorphism such

that �r(Er) = r.

The XML standard requires the regular expressions describing the possible con-

tent of an element (that is, its content model)) to be unambiguous in the following

sense: an element or string in the document is witnessed without look-ahead by at

most one token in the regular expression. More precisely, a regular expression r

is 1-unambiguous if for all x; y; z 2 N
� (i.e., �nite strings of naturals) and for all

n;m 2 N

xny 2 L(Er)

xmz 2 L(Er)

n 6= m

9=
;) �r(xny) 6= �r(xmy) (2)

The de�nition above can be formulated in an alternative fashion as follows.

Theorem 1 (Lemma 2.5 in [2]) A regular expression r is 1-unambiguous if and

only if the Glushkov automaton of r is deterministic.

Details on how to build the Glushkov automaton for a given expression r can be

found in [10]. Next theorem supports the validity of our simpli�cation process.

Theorem 2 Let r be a 1-unambiguous regular expression and f(Er) denote the

result of a homomorphism that replaces some positions in Er by the empty set symbol

;. Then, �r(f(Er)) is 1-unambiguous.

Proof: Let � � sym(Er) be the subset of positions n in Er such that f(n) 6= ;.

Then, L(f(Er)) = L(Er) \ reg(�) and then L(f(Er)) � L(Er). Therefore, we may

substitute L(Er) by L(f(Er)) in de�nition (2) and the implication remains valid.

Then, �r(f(Er)) is 1-unambiguous.

4 Regular expression pruning

The process by means of which each regular expression is simpli�ed is based on

a bottom-up parse of the original regular expression. The process replaces any

unwitnessed position in the expression Er by the regular expression corresponding

to the empty set (;); then the expression is projected into the reg(�) space; �nally,

the resulting regular expression is rearranged to avoid using symbols not in �.

The following simpli�cation rules, used in the last step, preserve unambiguity

as the resulting expression after each replacement exactly de�nes the same language.

;; E = E; ; = ;+ = ;

;jE = Ej; = E

;� = ;? = �

�;E = E; � = E

�jE = Ej� =

�
E if empty(E)

E? otherwise

�� = �+ = �? = �

(3)
where � is a special symbol denoting the empty string, not allowed in a valid reg-

ular expression and empty() is a Boolean function determining whether the regular

expression accepts the empty string or not (the way to compute it eÆciently can be

found in [10]).

5 Conclusions and future work

We have developed a method which has been used to automatically generate sim-
pli�ed DTDs at the Miguel de Cervantes Digital Library. On this �rst stage, we
addressed the simpli�cation of element type descriptions based on sample �les. On
a second stage, we plan to add the automatic elimination or addition of attributes.
We also plan to collect statistics to detect unusual patterns that may re
ect markup
mistakes.

References

[1] Alejandro Bia and Andr�es Pedre~no. The Miguel de Cervantes Digital Library: The

Hispanic Voice on the WEB. LLC (Literary and Linguistic Computing) journal, Oxford

University Press, 16(1):149{166, (in print) 2001. Presented at ALLC/ACH 2000, The

Joint International Conference of the Association for Literary and Linguistic Computing

and the Association for Computers and the humanities, 21/25 July 2000, University of

Glasgow.

[2] Anne Br�uggemann-Klein and Derick Wood. One-unambiguous regular languages. In-

formation and Computation, 142(2):182{206, 1 May 1998.

[3] Keith E. Shafer. Creating dtds via the gb-engine and fred. Technical report, OCLC

Online Computer Library Center, Inc., 6565 Frantz Road, Dublin, Ohio 43017-3395,

1995.

[4] Helena Ahonen. Automatic generation of SGML content models. Electronic Publishing

Origination, Dissemination, and Design, 8(2/3):195{206, June/September 1995.

[5] H. Ahonen, H. Mannila, and E. Nikunen. Generating grammars for SGML tagged texts

lacking DTD. Mathematical and Computer Modelling, 26(1):1{13, 1997.

[6] H. Ahonen. Disambiguation of SGML content models. Lecture Notes in Computer

Science, 1293:27, 1997.

[7] Matthew Young-Lai and Frank W. M. Tompa. Stochastic grammatical inference of text

database structure. Machine Learning, 40(2):1, 2000.

[8] Rafael C. Carrasco and Jose Oncina. Learning deterministic regular grammars from

stochastic samples in polynomial time. RAIRO (Theoretical Informatics and Applica-

tions), 33(1):1{20, 1999.

[9] Lou Burnard. The Pizza Chef: a TEI Tag Set Selector.

http://www.hcu.ox.ac.uk/TEI/pizza.html, September 1997. (Original version 13

September 1997, updated July 1998; Version 2 released 8 Oct 1999).

[10] Pascal Caron and Djelloul Ziadi. Characterization of Glushkov automata. TCS: Theo-

retical Computer Science, 233:75{90, 2000.

